skip to main content


Search for: All records

Editors contains: "McCartney, J.S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. McCartney, J.S. ; Tomac, I. (Ed.)
    Thermal pore pressurization in soil media has been investigated for the past few decades. It has been shown that temperature variations may significantly affect thermal pore pressure in clay soils confined deep into the ground. Moreover, thermal loading may lead to stress change and thermal deformation. Thermo-poroelastic and advance thermo-poroelastoplastic constitutive models have been formulated and incorporated numerically to simulate the thermo-hydro-mechanical process. However, the accurate response of soil media during THM process has not been completely understood. Although numerical modelling reasonably predicts the experimental observations, they still could not be used to completely justify the field observations. In this study, the main features of the thermo-poroelastic model are incorporated in a thermo-poroelastoplastic constitutive model (ACMEG-T) to further investigate the effect of different thermal and hydraulic properties on thermo-hydro-mechanical (THM) response of the soil media. 
    more » « less
  2. McCartney, J.S. ; Tomac, I. (Ed.)
    Geo-energy applications such as energy piles can expose unsaturated, deep foundation soils to elevated temperatures. This paper presents a closed-form equation for the ultimate bearing capacity of piles in unsaturated soils subject to elevated temperatures under drained conditions. For this purpose, a temperature-dependent effective stress model was incorporated into calculations of skin resistance and end bearing resistance of piles. The proposed temperature-dependent model is an extension of the modified β method for determining the ultimate pile bearing capacity of unsaturated soils under drained conditions. Employing the proposed model, a parametric study was carried out to evaluate the ultimate pile bearing capacity for hypothetical clay and silt soils at temperatures ranging from 25 °C to 55 °C. For both clay and silt, the results indicated that the ultimate pile bearing capacity varies with an increase in temperature. Different trends with temperature were observed for clay and silt. A monotonic increase in pile resistance was observed in clays. For silt, the pile resistance increased at relatively low matric suction whereas it decreased at higher matric suctions. 
    more » « less
  3. McCartney, J.S. ; Tomac, I. (Ed.)
    Energy piles are one of the best candidates to harvest shallow geothermal energy. Continuing harvesting and rejecting thermal energy from/to the ground may permanently change the soil temperature and consequently, may lead to different soil resistance parameters. Therefore, careful prediction of soil temperature variation close to energy geostructures is needed. This paper investigates the various parameters of heat source and soil media on transient heat transport in unsaturated soils. Green’s function and the method of separation of variables are employed to analytically analyze the transient heat transfer in the vicinity of energy piles. Results indicate that although higher heat flux increases the soil temperature surrounding a heat source, it has negligible effect on thermal influence zone where the soil temperature varies. In contrast, higher thermal diffusivity results in lower soil temperature close to a heat source while it increases the thermal influence zone. 
    more » « less
  4. McCartney, J.S. ; Tomac, I. (Ed.)
    Storing and extracting heat during different seasons of the year is possible through the utilization of a ground aquifer with an open loop Ground Source Heat Pump (GSHP) system. Being able to predict the hydrothermal performance of geothermal storage is required for an efficient operation of the system for cooling and heating of buildings. Complex 2D and 3D hydrothermal numerical models can simulate the thermal performance of geothermal storage accurately but often lack the desired computational speed for conducting large number of simulations for performance optimization. Instead, a 1D radial model can be used to conduct fast evaluation. However, it is important that the model computes the amount of heat loss from an aquifer into the overburden and underlying layers accurately to evaluate the amount of geothermal storage in the aquifer at different times. In this study, a source term is introduced into a 1D model to simulate the heat transfer between the aquifer and caprock/baserock in the vertical direction. The following two heat loss models are introduced in the heat advection-conduction equation: (i) Newton’s heating/cooling law, which leads to a closed form solution, and (ii) a conduction-based semi-analytical model, which requires a 1D finite element solution. When compared to a full 2D axisymmetric simulation result, it was found that the Newton’s heating/cooling law model with a constant heat transfer coefficient works well in cases of fast heat flow rate in thick aquifers of around 100 meters. But large errors in estimating heat dissipation are observed in cases with low heat flow rate in thin aquifers, especially for simulations exceeding two to five years. On the other hand, the model with the conduction-based semi-analytical solution gives a better match for these conditions. 
    more » « less
  5. McCartney, J.S. ; Tomac, I. (Ed.)
    Immiscible multiphase flow in porous media is largely affected by interfacial properties, manifested in contact angle and surface tension. The gas-liquid surface tension can be significantly altered by suspended particles at the interface. Particle-laden interfaces have unique properties, for example, a lower surface tension of interfaces laden with surfactants or nanoparticles. This study investigates the impacts of a motile bacterium Escherichia coli ( E. coli , strain ATCC 9637) on the air-water surface tension. Methods of the maximum bubble pressure, the du Noüy ring, and the pendant droplet are used to measure the surface tension of the motile-bacteria-laden interfaces. Measured surface tension remains independent to the E. coli concentration when using the maximum bubble pressure method, decreases with increased E. coli concentration in the du Noüy ring method, and presents time-dependent changes by the pendant drop method. The analyses show that the discrepancies may come from the different convection-diffusion processes of E. coli in the flow among various testing methods. 
    more » « less
  6. McCartney, J.S. ; Tomac, I. (Ed.)
    Multiphase flow patterns in porous media largely depend on the properties of the fluids and interfaces such as viscosity, surface tension, and contact angle. Microorganisms in soils change the fluid and interfacial properties, and thus can alter multiphase fluid flow in porous media. This study investigates the impact of motile bacterium Escherichia coli ( E. coli ) on fluid displacement patterns in a microfluidic chip. The fluid displacement is observed during the saturation and the desaturation processes of the microfluidic chip with and without E.coli suspension. Time-lapse photography results show that the presence of E.coli alters the displacement patterns during the wetting and drying process and changes the residual saturation of the chip. Although studies of the impacts of motility on interfacial properties remain elusive, these results bring the expectation to the manipulation of multiphase transport in porous media and the adaptive control of industrial and environmental flow processes using active particles. 
    more » « less
  7. McCartney, J.S. ; Tomac, I. (Ed.)
    This paper focuses on the results from thermal triaxial tests on normally consolidated Georgia Kaolinite. The hypothesis evaluated in this study is whether the initial mean effective stress has an impact on the thermal volume change encountered during drained heating. To that effect, specimens at three different initial mean effective stresses were considered in this study. The clay specimens were first isotropically consolidated to a normally consolidated state, then subjected to a drained heating cooling cycle followed by further mechanical loading to higher effective stresses. The results indicate contractive volumetric strain during drained heating where the volumetric strain was found to increase with increasing initial mean effective stress. A rebound in volume was observed during subsequent cooling where the net change in volume transitioned from zero volume change of the specimen to net contraction of the specimen after a heating cooling cycle as the initial mean effective stress increased. The results indicate the need for considering the effect of initial mean effective stress when assessing in-situ heating as a method of soil improvement. 
    more » « less